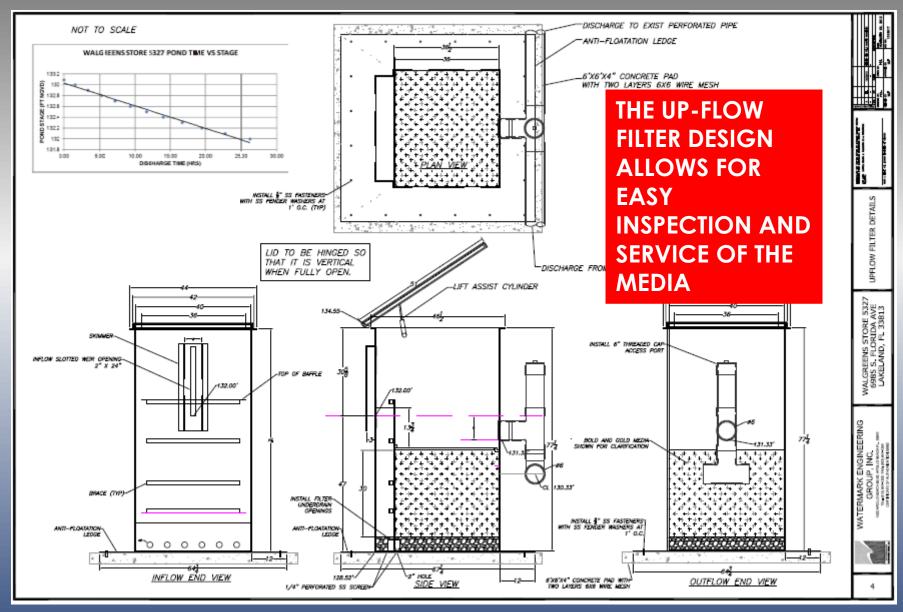
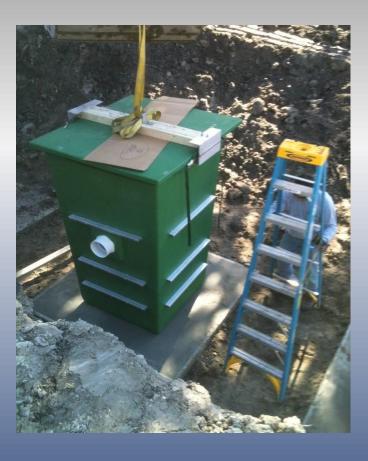

Up-Flow Filter using Bold & Gold

Lakeland Florida


Walgreen Store using ECT3 (expanded clay and tire chip media)

Distributed by ECS, Apopka Florida

Up-Flow Filter using Bold & Gold

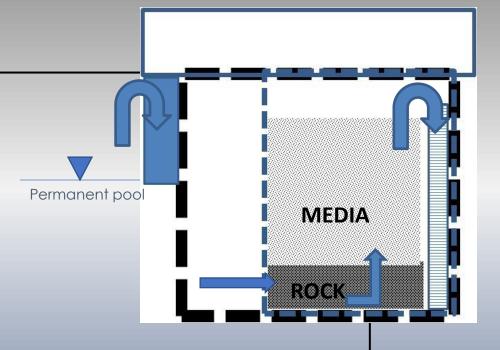

Example Pond Retrofit Design for Upflow Filter

Up-Flow Filter Installation

Improved Treatment Using An Up-flow Filter with Wet Pond

Observations

- Filters can be designed to remove nitrogen without media replacement
- For phosphorus, media replacement time is specified
- Can be easily cleaned
- Can be used in BMP Treatment Train
- Takes no more area



Up-Flow with Wet Detention Performance Data

Summary Data

- Concentration data based
- Averages based on 6 events
- Construction cost less than under drains
- Average yearly based1.0 inch design for filter

Parameter	TN	TP	TSS
Average Influent Concentration (mg/L)	1.83	0.73	42.7
Average Filter Removal (%)	22	25	60
Average Pond Removal (%)	62	63	79
Average Pond + Filter Removal (%)	70	72	91
Average Annual System Performance	67	70	89

Field Data

		١Δ٦	$\Gamma \Lambda$

	рН		Turbidity		DO			Temp		
Date:	Pond In	Filter In	Filter Out	Pond In	Filter In	Filter Out	Pond In	Filter In	Filter Out	
	SU	SU	SU	NTU	NTU	NTU	mg/L	mg/L	mg/L	۰C
3/25	7.14	7.25	7.05	10.5	2.50	2.25	7.20	6.09	0.61	22.5
4/8	7.20	7.40	7.30	39.0	5.47	4.52	7.08	4.09	1.14	24.0
4/14	7.15	7.20	7.05	4.40	1.19	1.12	7.13	7.54	0.27	25.2
4/15	6.90	6.85	6.8				6.23	7.10	0.59	27.0
4/28	6.76	6.67	6.45	32.5	2.85	1.96	5.29	5.80	0.36	29.1
AVG	7.03	7.07	6.93	21.6	3.00	2.46	6.59	6.10	0.74	25.6
% Change based on pond influent		86%	89%		7 %	89%				
% Change due to filter				18%			88%			

USING 5 SAMPLES: NOx (mg/L) IN=0.77 OUT=0.025 97% removal